Descent-Cycling in Schubert Calculus

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descent-Cycling in Schubert Calculus

CONTENTS We prove two lemmata about Schubert calculus on generalized 1. Background on Schubert Problems f|ag manifolds G/B, and in the case of the ordinary flag manifold 2. The Schubert Problems Graph and Its Structure for Small GLn/B we interpret them combinatorially in terms of descents, GLn(C) and geometrically in terms of missing subspaces. One of them 3. Proofs of the Lemmata gives a symme...

متن کامل

Schubert Calculus and Puzzles

1. Interval positroid varieties 1 1.1. Schubert varieties 1 1.2. Schubert calculus 2 1.3. First positivity result 3 1.4. Interval rank varieties 5 2. Vakil’s Littlewood-Richardson rule 7 2.1. Combinatorial shifting 7 2.2. Geometric shifting 7 2.3. Vakil’s degeneration order 9 2.4. Partial puzzles 10 3. Equivariant and Kextensions 11 3.1. K-homology 11 3.2. K-cohomology 12 3.3. Equivariant K-the...

متن کامل

Equivariant Quantum Schubert Calculus

We study the T−equivariant quantum cohomology of the Grassmannian. We prove the vanishing of a certain class of equivariant quantum Littlewood-Richardson coefficients, which implies an equivariant quantum Pieri rule. As in the equivariant case, this implies an algorithm to compute the equivariant quantum Littlewood-Richardson coefficients.

متن کامل

Contemporary Schubert Calculus and Schubert Geometry

Schubert calculus refers to the calculus of enumerative geometry, which is the art of counting geometric figures determined by given incidence conditions. For example, how many lines in projective 3-space meet four given lines? This was developed in the 19th century and presented in the classic treatise ”Kälkul der abzählanden Geometrie” by Herman Cäser Hannibal Schubert in 1879. Schubert, Pier...

متن کامل

Eigenvalues and Schubert Calculus

We describe recent work of Klyachko, Totaro, Knutson, and Tao, that characterizes eigenvalues of sums of Hermitian matrices, and decomposition of tensor products of representations of GLn(C). We explain related applications to invariant factors of products of matrices, intersections in Grassmann varieties, and singular values of sums and products of arbitrary matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental Mathematics

سال: 2001

ISSN: 1058-6458,1944-950X

DOI: 10.1080/10586458.2001.10504455